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Abstract. Automatic biometric analysis of the human body is normally
reserved for expensive customisation of clothing items e.g. for sports or
medical purposes. These systems are usually built upon photogrammet-
ric techniques currently requiring a rig and well calibrated cameras. Here
we propose building on advancements in deep learning as well as util-
ising technology present in mobile phones for cheaply and accurately
determining biometric data of the foot. The system is designed to run
efficiently in a mobile phone app where it can be used in uncalibrated
environments and without rigs. By scanning the foot with the phone
camera, our system recovers both the 3D shape as well as the scale of
the foot, opening the door way for automatic shoe size suggestion. Our
contributions are (1) an efficient multiview feed forward neural network
capable of inferring foot shape and scale, (2) a system for training from
completely synthetic data and (3) a dataset of multiview feet images for
evaluation. We fully ablate our system and show our design choices to
improve performance at every stage. Our final design has a vertex error
of only 1mm (for 25cm long synthetic feet) and 4mm error in foot length
on real feet.

1 Introduction

Footwear is an essential clothing item for all age groups and genders, serving
many practical purposes, such as protection, but also typically worn as a fashion
item. It is conventional and often vital for one to physically try on a pair of ready-
to-wear shoes prior to deciding upon a purchase. This is cumbersome for in-store
shopping but very inefficient and environmentally damaging for online shopping.
In this setting, it is standard for many shoes to be transported back and forth
between warehouse and customer to accommodate for this try-on process.

Foot length-to-size charts can be easily found on the internet but the conver-
sion tends to vary from brand to brand. Length alone is also often not sufficient
to characterise the entire shape of the foot and other measurements such as foot
width and instep girth are important for correct fitting. Therefore, a method for
easily obtaining a 3D model of the foot would be beneficial as it allows customers
to virtually try on shoes to find the best size and shape.

Many products for 2D /3D foot scanning already exist on the market such as
those developed by VoxelCare [1] and Vorum [2] but these devices tend to be
expensive and are usually not targeted at common shoe customers.
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Fig. 1: Overview of the foot reconstruction framework

In this paper, we propose a novel end-to-end framework, which we call Foot-
Net, that reconstructs a scale accurate 3D mesh representation of the foot from
multiple 2D images. Reconstruction is very quick and can be computed directly
on a smart phone.

2 Related work

Traditional methods take a geometrical approach to tackle the reconstruction
problem. Examples of commonly used techniques are passive/active triangula-
tion [1,2,3,4,5,6] and space carving [7]. Deep learning has been tremendously
successful in tackling vision related problems including 3D reconstruction. CNNs
for object reconstruction typically have an encoder that maps the input into a
latent variable or feature vector, which is then decoded into the desired output
depending on how the 3D shape is represented. Common representations include
voxel grids, meshes and point clouds.

Voxel grids. A standard approach is to use up-convolutional layers to directly
regress the 3D voxel occupancy probabilities from the latent variables [8,9,10].
With the availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect),
methods were proposed to reconstruct objects from depth maps [11,12,13]. For
example, MarrNet [12] uses a two-stage network, where the first stage is an
encoder-decoder architecture that predicts the 2.5D sketches (depth, surface nor-
mals, and silhouette), and the second stage is another encoder-decoder network
that outputs a voxelised shape. These methods have generally been successful in
reconstruction tasks but the output resolution is limited due to the high mem-
ory requirements, as the memory scales cubically with the voxel resolution. The
methods mentioned above produce grids of resolution 323 to 643, except for
MarrNet whose output resolution is 1283. Approaches such as space partition-
ing [14,15] and coarse-to-fine refinement [16,17, 18] were able to increase the
output voxel size to 256° or 5123.

Meshes. Meshes are less demanding in memory but they are not regularly
structured so the network architectures have to be specifically designed. One
approach is to start with a template such as a sphere and deform the template
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to output the predicted 3D shape [19,20]. Kato et al. [19] proposed a method to
approximate the gradient for rendering which enables integration of rendering a
mesh into a neural network. Wang et al. [20] represents the 3D mesh in a graph-
based CNN and predicts the shape by progressively deforming an ellipsoid.

Multiview networks. The problem of self-occlusion could be overcome by
providing more than one viewpoint, especially in reconstructing novel shapes.
Several methods were proposed to combine the information from different view-
points. For example, silhouettes from multiple views can be combined at the
input as separate channels and then passed through convolutional layers, or
they can be passed into separate convolutional blocks and the outputs are con-
catenated [21]. The number of viewpoints would be fixed for such models. Choy
et al. [22] uses a LSTM framework to combine a variable number of views but
the output is not consistent if the order of input views is altered. Wiles and
Zisserman’s [23] uses max-pooling to combine the encoded latent feature vectors
from multiple views so that the result is not affected by the order of input images
and it could generalise to any number of views.

Foot reconstruction. Several methods were developed specifically for foot
shape reconstruction. For example, Amstutz et al. [24] reduces the 3D vertices
of feet to only 12 parameters while preserving 92% of the shape variation, using
PCA decomposition on a foot dataset. Given multiple images of a foot from
different viewpoints, reconstruction is done by optimising the pose parameters,
shape parameters and scale. However, their system operates in a very constrained
setting, using a camera rig, structured lighting and physical aids for background
subtraction. Our solution is for in the wild use, using a mobile phone. Another
approach [25] uses deep learning to infer the foot shape from a single depth
map by synthesising a new view that contains information of the foot missing
from the input. Unfortunately, this method requires a depth sensor such as the
Microsoft Kinect to operate.

3 Overview

Our system is illustrated in Fig 1 and is broken down into three parts:

Acquisition. Our system takes multiple photos of the target from various view-
points surrounding the foot. Using a smart phone camera we utilise the AR
features (ARKit/ARCore) and attach to each image the real world camera ex-
trinsics. The RGB images are preprocessed by passing them through a foot
segmentation network.

3D inference using FootNet. A deep network ingests the silhouette and
camera pose data to infer foot length as well as shape. This regression network
(FootNet) takes inspiration from the architecture of SilNet [23] and is able to
handle any number of input viewpoints without being affected by the order of
inputs. Compared to SilNet which was shown to only handle 1 degree of freedom
in camera pose, FootNet is built to handle all 6. In addition, FootNet regresses to
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a dense mesh reconstruction rather than a voxel grid and incorporates an efficient
encoder based on MobileNet [26] to allow mobile implementation. We also show
FootNet works on real data whereas SilNet was only tested on synthetic data.

Foot shape and scale. Foot shape is paramaterised by a PCA foot model
trained from 3D scans of people’s feet using a multi-view stereo (MVS) sys-
tem [27]. We train our deep network to infer these parameters from synthetic
data only. Scale of the foot is inferred as a separate output. We next describe
our method in detail.

4 Methods

Our network is trained on synthetic foot silhouettes generated using arbitrary
foot shapes and camera poses. A PCA based 3D foot mesh is used here and
silhouettes are rendered by artificially adjusting camera extrinsics and sampling
shape from the PCA model.

4.1 3D foot mesh parameterisation

3D meshes of over 1600 feet are obtained using a MVS system?! [27]. We apply
PCA to this foot dataset, similar to Amstutz et al. [24], expressing changes
in foot shape based on 10 PCA parameters. The foot mesh is composed of
1602 vertices. Fig 2(a) illustrates the data collection pipeline showing calibration
pattern used for multi-view stereo and in Fig 2(b) the PCA based foot mesh with
annotated vertex points representing various anatomical positions on the foot. A
comparison of example dense foot meshes and their compact PCA representation
is shown in Fig 3.
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Fig. 2: Constructing the PCA based model. Data collection using MVS is shown
in (a) and the final PCA based model with vertex annotations is shown in (b)

From Fig 4, we see that the first coefficient corresponds to the roundness
of the toes, the second corresponding to width and thickness, the fourth corre-
sponding to height of the big toe.

! https:/snapfeet.io/en






