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Abstract

Many digital meters such as those used for home health (e.g. blood pressure me-
ters) or meters monitoring industrial equipment do not contain wireless connectivity.
Hence, connecting these devices to phone tracking apps or control centres either requires
cumbersome manual transcription or is not plausible due to costs. Our motivation is to
cheaply retro-fit these types of meters with ‘smart’ data transfer capabilities using a mo-
bile phone app and limited training data. We demonstrate how one can use single training
images of meter screens to build efficient custom meter readers targeted to chosen de-
vices. To this end, we build a CNN based system which runs in real-time on mobile
device with very high read accuracy (close to 100%). Our contributions include (i) intro-
duction of an exciting new application domain, (ii) a method of training from purely syn-
thetic data by reducing domain shift using a surprisingly simple approach which unlike
adversarial training based methods does not even require unlabelled data; (iii) a highly
accurate system for parsing digital meter screens and (iv) release of a new screen reading
dataset. The system, although trained solely on synthetic data, transfers very well to the
real-world. Our method of screen detection and text recognition also improves over the
state of the art on our dataset.

1 Introduction
A surprisingly high number of different digital meters are actively used by any one person
on a day to day basis. Whether this be a scale to measure body weight or a thermometer to
check temperature. In fact a large majority of these types of meters are for personal health
monitoring e.g. blood pressure and blood glucose, etc. In clinical and industrial settings the
number of digital meters escalates e.g. oximeter, spirometer and machine status monitors.
With all this data, collection and analysis is valuable, but record keeping is still normally
done manually. Not only is this time consuming, it is also prone to human entry error.

To combat this problem, modern meters are gradually becoming ‘smart’, meaning they
wirelessly transmit data for remote analysis. This is typically done by pairing the meter with
a moblie phone using Bluetooth. However, upgrading equipment to ‘smart’ capabilities is
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very costly, particularly in industrial or hospital settings. Furthermore, Bluetooth pairing is
a rather slow and cumbersome operation.

We address failings of ‘smart’ meters and manual data entry and propose a vision based
system to reliably read meter screens using a mobile phone. Focus is on precise automatic
reading, especially essential when handling medical data. To this end, we first recognise
and detect the exact model of meter screen and precisely localise screen position. Only then
is the display parsed. Tuning our recognition system to the exact target meter means very
strict validation schemes can be applied based on display type and screen digit positions, see
Figure 1.

Obtaining precise screen coordinates of a particular model of meter is a challenging task
for 4 main reasons: 1) screens are typically highly reflective and in some cases mirror like,
2) screens change appearance, 3) hands occlude many types of meters and 4) there are a
vast number of meters with very many different screen layouts, manually collecting enough
ground truth data of screen positions to cover all variations in lighting, position, camera an-
gle, screen appearance, and backgrounds is very restrictive. Because of this, we propose
a one-shot learning approach (i.e. only one real template image is labelled) of synthesis-
ing the training data by pasting a single labelled image of the target meter (under various
transformations) on multiple different backgrounds.

Using synthetic data for object detection is not new, similar methods to ours [5, 6] use in
the order of 100s of labelled images per object instance. Here we show how only one image
can be used without overfitting. An alternative approach to synthesising data are one-shot-
learning methods [12, 20]. However, to date, these methods only provide image axis aligned
bounding box detections [4] and do not natively support variation in object size, rotation
and perspective transformation (essential for our task). Similarly tracking based approaches
such as correlation filtering [2] or long term object trackers [13] (which can be initialised
from a single image) do not consider rotation or perspective distortion of the bounding box.
Keypoint matching to a single template image theoretically handles these constraints but in
our experimental section this is shown to not work in practice.

Recognising text or numbers in generic scenes using neural networks has been addressed
by a number of prior works using a two step approach of localisation then recognition [7, 10].
Recently some success has been found by incorporating both localisation and recognition
into the same network [16]. In all cases however, localisation does not consider perspective
distortion, resulting in systems which either a) fail due to oblique camera angles, or b) require
larger networks to cope with larger variation of text.

Here domain shift from synthetic to real data is reduced using a modality converter, see
Figure 2. Once trained, our models can be applied to real data for screen detection and
perspective distortion correction. As such, a much simpler network for text recognition can
be used, this too is trainable from completely synthetic data. Our screen detector assumes a
CNN model which the modality converter is plugged into. The modality converter is agnostic
to architecture and we evaluate the performance using MobileNet [9] and MaskRCNN [8].

2 Method overview
Our system takes as input an image of the target meter and efficiently interprets the values
contained on screen. It consists of two parts, (1) a screen detector which recovers the size,
location and orientation of the meter screen, and (2) a digit recognizer which is applied to
an image of the extracted and rectified screen, see Figure 1 for an overview. These two parts
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Figure 1: Real-time screen reading on mobile phone. Our system can be trained to read a digital
meter screen at near 100% read accuracy for in-the-wild conditions. The system can be trained using
only one human labelled image consisting of a binary mask indicating screen and background pixels,
and the four corner coordinates of the screen.

are processed using two separate deep convolutional neural networks (CNNs).

Screen detection. Our screen detector operates on images of digital meters and recovers
the precise four coordinates of the screen corners, forming a quadrangle. Thus, assuming a
planar surface of the screen, perspective correction is applied prior to digit recognition. The
screen detector consists of a standard CNN backbone architecture, such as VGG16, ResNet
or Inception, but with an additional block of layers at the input, which we call the modality
converter. In order to explain the function of the modality converter we must first briefly
describe how the screen detector is trained.

One-shot training. Training of the screen detector is accomplished using a single hand la-
belled template image. Labels consist of a foreground/background mask as well as locations
of meter screen corners. This template is fed into our meter synthesizer which generates
other examples of this meter under various homographic transformations, settings, lighting
and reflections, please see Figure 2 for examples of blood glucose meter synthesis.

Modality converter. As the screen detector is trained from generated data there is a strong
risk of overfitting or learning artefacts which do not transfer to real world images. The goal
of the modality converter is to convert synthetic and real data into a common space where
they are indistinguishable from one another. Other works have explored using adversarial
training to learn how to transfer to a common feature space [15, 22] or adapt synthetic im-
ages so they look as real as possible [18, 21]. These approaches require large amounts of
unsupervised data to capture the real data distributions. However, there are many real world
applications where obtaining this amount of unlabelled data is impossible. For example,
capturing the appearance space of a blood glucose meter under the full range of on screen
values (which is part of meter appearance) would not be possible i.e. all times and dates and
ranges of glucose would require an insurmountable number of blood tests. To overcome the
limitations of adversarial training we propose to explore low level and efficient functions for
the modality converter, such as edge based filters, colour removal, blurring and using pre-
trained filters from a convolutional network. We show experimentally that by choosing the
right function one can perform very well on our dataset of meters and surpass state-of-the-art
object detectors trained without the added modality converter.

Digit recognition. The screen area is rectified and fed to the digit recognizer (another
CNN) which extracts strings of characters and labels them according to type e.g. date or
time. Validation of the strings is also performed.
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Figure 2:Reducing domain shift. A modality converter is applied to synthetic images at train time
and real images at test time. Altering the function of the modality converter adjusts the domain shift
between real and synthetic data.

3 Screen detection
Template image. The template image contains the target meter in a frontal facing pose
with the screen surface normal pointing at the camera. Ground truth labels consist of the four
coordinates of the meter screen in the training image, as well as the foreground/background
mask. The label for background should also include the device screen, see Figure 2, so
that during application the screen detector learns to ignore screen content. Examples of the
ground truth labels for other meters is shown in Figure 9.

Meter synthesis. The template image is placed on randomly chosen background images
under various different rotations, scales and perspective distortions using alpha matting with
the mask. Background images are taken from a dataset of images containing people. This is
also appropriate for transfer to real world as person re�ection on the meter screens is typical.

Backbone CNN. The backbone CNN connects to the modality converter (which is ag-
nostic to the CNN backbone architecture) and performs the screen regression task. We use
MobileNet [9] and replace the classi�cation layer with a regression layer to output 8 val-
ues representing the four (x,y) coordinates of the screen and train using an L2 loss. During
evaluation it is also show how MaskRCNN [8] or ResNet50 can also be used as a backbone.

4 Digit recognition

Preset regions of the recti�ed screens are associated with the type of text they containe.g.
date, time or weight. As the majority of meters have �xed areas for the type of digits dis-
played, they can initially be de�ned by hand on the template image. Characters within these
regions are then detected individually using a small CNN which we aptly call LeDigit due to
similarities with the LeNet5 [14] network from which it is based.

LeDigit. The network ingests a grayscale image and produces a heatmap for the location
of each class of possible characters (19 classes comprising of: the digits 0-9, symbols `:', `.',
`-', `am', `pm' and the letters `L', `o', `H' and `i' (used for certain meters in our dataset).
LeDigit is derived from LeNet5 by converting the network into a fully convolutional version
and changing the loss to L2 for heatmap regression. The receptive �eld of the network is
50x25 pixels, which is important to know when scaling the training data appropriately.

Training. The training data for LeDigit is completely synthetic. Various combinations of
characters are generated, including dates and times, these are augmented in various ways
(size, rotation, blurring, erosion/dilation, brightness inversion), then alpha blended with
a random background image (see Figure 3 (a) for examples). Associated ground truth


